Central command blunts sensitivity of arterial baroreceptor-heart rate reflex at onset of voluntary static exercise.
نویسندگان
چکیده
We have reported that baroreflex bradycardia by stimulation of the aortic depressor nerve is blunted at the onset of voluntary static exercise in conscious cats. Central command may contribute to the blunted bradycardia, because the most blunted bradycardia occurs immediately before exercise or when a forelimb is extended before force development. However, it remained unknown whether the blunted bradycardia is due to either reduced sensitivity of the baroreflex stimulus-response curve or resetting of the curve toward a higher blood pressure. To determine this, we examined the stimulus-response relationship between systolic (SAP) or mean arterial pressure (MAP) and heart rate (HR) at the onset of and during the later period of static exercise in seven cats (n = 348 trials) by changing arterial pressure with infusion of nitroprusside and phenylephrine or norepinephrine. The slope of the MAP-HR curve decreased at the onset of exercise to 48% of the preexercise value (2.9 +/- 0.4 beats x min(-1) x mmHg(-1)); the slope of the SAP-HR curve decreased to 59%. The threshold blood pressures of the stimulus-response curves, at which HR started to fall due to arterial baroreflex, were not affected. In contrast, the slopes of the stimulus-response curves during the later period of exercise returned near the preexercise levels, whereas the threshold blood pressures elevated 6-8 mmHg. The maximal plateau level of HR was not different before and during static exercise, denying an upward shift of the baroreflex stimulus-response curves. Thus central command is likely to attenuate sensitivity of the cardiac component of arterial baroreflex at the onset of voluntary static exercise without shifting the stimulus-response curve.
منابع مشابه
Differential effect of central command on aortic and carotid sinus baroreceptor-heart rate reflexes at the onset of spontaneous, fictive motor activity.
Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in conscious cats and spontaneous contraction in decerebrate cats. The purpose of this study was to examine whether central command attenuates the sensitivity of the carotid sinus baroreceptor-HR reflex at the onset of spontaneous, f...
متن کاملCentral command does not suppress baroreflex control of cardiac sympathetic nerve activity at the onset of spontaneous motor activity in the decerebrate cat.
Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in animals. We have examined whether baroreflex control of cardiac sympathetic nerve activity (CSNA) and/or cardiovagal baroreflex sensitivity are altered at the onset of spontaneously occurring motor behavior, which was monitored wi...
متن کاملGadolinium does not blunt the cardiovascular responses at the onset of voluntary static exercise in cats: a predominant role of central command.
The cardiovascular adaptation at the onset of voluntary static exercise is controlled by the autonomic nervous system. Two neural mechanisms are responsible for the cardiovascular adaptation: one is central command descending from higher brain centers, and the other is a muscle mechanosensitive reflex from activation of mechanoreceptors in the contracting muscles. To examine which mechanism pla...
متن کاملCentral command: control of cardiac sympathetic and vagal efferent nerve activity and the arterial baroreflex during spontaneous motor behaviour in animals.
Feedforward control by higher brain centres (termed central command) plays a role in the autonomic regulation of the cardiovascular system during exercise. Over the past 20 years, workers in our laboratory have used the precollicular-premammillary decerebrate animal model to identify the neural circuitry involved in the CNS control of cardiac autonomic outflow and arterial baroreflex function. ...
متن کاملBoth central command and exercise pressor reflex activate cardiac sympathetic nerve activity in decerebrate cats.
Both static and dynamic exercise are known to increase cardiac pump function as well as arterial blood pressure. Feedforward control by central command and feedback control by the exercise pressor reflex are thought to be the neural mechanisms causing these effects during exercise. It remains unknown as to how each mechanism activates cardiac sympathetic nerve activity (CSNA) during exercise, e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 290 1 شماره
صفحات -
تاریخ انتشار 2006